Home |
Search |
Today's Posts |
#1
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
I have a complex numbers vector of size 128.
when using the inverse fourier (and I used it before okay) it returns a complex numbers vector instead of a real number vector as expected. any idea? |
#2
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
I have a complex numbers, vector of size 128.
If you do a Fourier Transform, and then do an Inverse Fourier Transform, you should end up with the original data. How did you get the 128 Complex numbers? Where they calculated via fft? The only thing I can think of is that, do to rounding, you have a very small Imaginary part. -- Dana DeLouis "Daniel" wrote in message ... I have a complex numbers vector of size 128. when using the inverse fourier (and I used it before okay) it returns a complex numbers vector instead of a real number vector as expected. any idea? |
#3
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
Dana
Thanks, yes, it is true, you fft and you get a complex, you ifft and get back the original. however it should work when you already have a complex vector. and that is the situation, I had a complex vector that I made with the function complex(a,b). the inverse is returning another complex? help! is there a way to attach the file here to show you? "Dana DeLouis" wrote: I have a complex numbers, vector of size 128. If you do a Fourier Transform, and then do an Inverse Fourier Transform, you should end up with the original data. How did you get the 128 Complex numbers? Where they calculated via fft? The only thing I can think of is that, do to rounding, you have a very small Imaginary part. -- Dana DeLouis "Daniel" wrote in message ... I have a complex numbers vector of size 128. when using the inverse fourier (and I used it before okay) it returns a complex numbers vector instead of a real number vector as expected. any idea? |
#4
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
Attachments are strongly discouraged in these newsgroups, and are filtered
out on many portals. 128 lines of text in the body of your reply, together with a brief discreption does not seem excessive. When Excel produces a complex value, it creates a string where both the real and immaginary components are limited to 15 significant figures. However, 17 significant figures are required to uniquely characterize a double precision value. Hence there is ample room for discrepancies in representation that would prevent complete cancellation of the immaginary part. Even if you include 17 significant figures in your constructed complex values, Excel's string to number conversion routines ignore anything beyond the 15th figure. VBA's string to number conversion routines do use the trailing figures to get a more accurate representation, so you could try doing the calculations from VBA to see if that helps. Jerry "Daniel" wrote: Dana Thanks, yes, it is true, you fft and you get a complex, you ifft and get back the original. however it should work when you already have a complex vector. and that is the situation, I had a complex vector that I made with the function complex(a,b). the inverse is returning another complex? help! is there a way to attach the file here to show you? "Dana DeLouis" wrote: I have a complex numbers, vector of size 128. If you do a Fourier Transform, and then do an Inverse Fourier Transform, you should end up with the original data. How did you get the 128 Complex numbers? Where they calculated via fft? The only thing I can think of is that, do to rounding, you have a very small Imaginary part. -- Dana DeLouis "Daniel" wrote in message ... I have a complex numbers vector of size 128. when using the inverse fourier (and I used it before okay) it returns a complex numbers vector instead of a real number vector as expected. any idea? |
#5
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
...I had a complex vector that I made with the
function complex(a,b). the inverse is returning another complex? help! Hi. In general, that would be a true statement. I'm not exactly sure I understand what you are starting from, and the desired results. is there a way to attach the file here to show you? It's best not to post attachments in this group. Feel free to send me the file. I'd be glad to take a look at it with any notes you have. If we come up with anything, we can post back for the bennefit of others searching for the same question. -- Dana DeLouis "Daniel" wrote in message ... Dana Thanks, yes, it is true, you fft and you get a complex, you ifft and get back the original. however it should work when you already have a complex vector. and that is the situation, I had a complex vector that I made with the function complex(a,b). the inverse is returning another complex? help! is there a way to attach the file here to show you? "Dana DeLouis" wrote: I have a complex numbers, vector of size 128. If you do a Fourier Transform, and then do an Inverse Fourier Transform, you should end up with the original data. How did you get the 128 Complex numbers? Where they calculated via fft? The only thing I can think of is that, do to rounding, you have a very small Imaginary part. -- Dana DeLouis "Daniel" wrote in message ... I have a complex numbers vector of size 128. when using the inverse fourier (and I used it before okay) it returns a complex numbers vector instead of a real number vector as expected. any idea? |
#6
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
here is the data:
DATA IN: 256 by 1: 3622432.69085871 -186510.890077619+552318.675643871i 136351.90840889+128685.356316703i -69406.3590549799+62228.5254163409i 15432.2545613187+135773.659985996i 26529.9244974821+24256.4671123027i -37356.4750513362+59956.0196862514i 34817.8887398094+70868.6983265412i -378.053702633329-1954.82408653547i -15183.9928563519+59506.032353415i 79616.6683927417+61657.1570657672i -31345.1571340127+33317.4393183982i -45726.7268574954+177264.801124894i -70104.5841174498-107626.306430364i 2721.46860748023+49427.3809145383i 10996.7878811993-3772.8767254812i -10561.2252906057+16218.9902258319i 617.098387886344+14990.254276092i 1650.04100756321+12668.4869100937i 480.347818443383+4675.99376523975i -4794.00682573092+21172.1078122907i 78410.6888870517-12807.0965508811i -52497.4679215029+153484.826298038i -12996.6851367212-11825.75543609i -32275.0068262009+20994.5376540798i -3674.05062923781+17620.8993137021i -12010.980783949+7833.32879650476i -9843.63643622684+12621.1320688395i -7454.78007861324+13274.908186235i -12627.5983747215+11934.4463046931i -3219.06432237693+11092.7083078565i -14116.9960944027+7539.98735546925i -19564.8608038007+30072.1419146335i -7915.27109697037-1943.05127057098i -26414.5166740743+1377.7877119916i 6413.85052862666-196.871139400524i -5941.18844662414+17378.6003873176i -3440.56441294517-3058.15021244461i -5776.73796375566+9332.23317665895i 6339.96906827423+11369.9363008505i -1685.68337230534-1626.51204658462i -18037.1581001968+21657.3195591783i 5362.00895805778+5213.8456878619i -8971.78889344235+4740.75121503213i -6669.5786161148+9305.72421019594i -4259.52166980098+8313.50934365472i -6073.39095092408+14352.9423193483i -11405.4753358087+1321.81413635167i -3835.68008009027+23282.3598234637i -2878.87019695855-3690.25994037177i -8488.23464273469+9689.46749998048i -2543.40223854608+6691.42756469494i -3541.11358845537+5594.22596681964i -8312.19172285422+3828.72141874257i -7270.24942277045+7148.4083253089i -2329.40447447986+9836.44489045348i -437.720959310802+2913.8720885112i -23477.7266777838+12255.3141830181i 16665.3357171977+44070.2010537826i -7428.38091110582-35829.7969624059i -69411.9798326082+35371.113622086i 127348.547989946+11412.111552002i -124182.173262659-4977.17702926088i 2116.25976277968+1740.73041057433i -27103.8408086511+9940.71578243508i -32953.7168722569+14172.5836680927i 1612.87612865253+9161.87960908261i -3031.41109853599+3289.63939983886i -12204.304726885+10443.007990756i -9549.74531665331+9355.57802350887i -7994.89017384993+13111.7153118193i -5821.77477815242+2555.5328162224i -1193.92372142829+1525.63621957201i -2024.57165154815+5158.55789977582i -4340.95806833021+663.494707935548i -2561.40172118033+2614.9508680314i -3484.03768500436+4168.97301954885i -5222.93218845766+786.878966445194i -3486.50718925682+4478.47060368095i -2520.64272219499+3161.38529398149i -4879.39135774822+1454.57676477103i -2389.89830090617+4422.66728331419i -4103.81325211014+4475.5985722453i -4524.89913312322+1419.67153246507i -5409.47720429731+3827.82422748157i -3027.27094297172+1833.44776772268i -3483.39489386973+1140.4322964488i -3103.98084818453+1450.5665748939i -2090.39405842004+4210.93816764999i -2895.60989803286+233.221421069531i -3511.92565235388+1486.07567540548i -1969.59772491917+4386.27307704067i -4689.14515973876-2102.54229963075i -5508.51345444303+842.778107148689i -3133.55801011661+5238.7772596529i -4317.78785148141-504.545580361354i -4567.04740637766+1774.34759946051i -2407.31013017895+3299.77615913476i -3373.35648027269+170.699288280137i -5003.49834850741+2611.55123937115i -4062.07630458741+2707.85610278658i -1402.11612747877-11.9973522757371i -3815.24071526552+294.595085174716i -3663.85910288134+1503.06429284461i -3787.91183252016+807.332390545756i -4001.51873138588+552.846620694775i -3738.6279402289+1012.58259616029i -3903.84269027163+1516.03007680691i -3276.90497222702-116.945827251124i -3860.88322900542+1557.43949932504i -3402.07707190253+657.341945628003i -3989.25772904435+198.234967108445i -3751.24235597242+1513.72410696396i -3402.14786611108+93.9610753081316i -3821.62672866501+918.292322376636i -3722.72514268017+1044.10741286906i -3485.39442644249+121.854399099736i -3815.27199289295+2275.50616396285i -3053.81637859402-592.868000694285i -3815.87757802367+1438.23683857028i -2328.00909338698-354.874949201567i -4071.26339417212+810.624868558987i -4650.40355141346+686.275836976206i -3296.43489908894-592.038979953593i -3379.25088347144+972.540517056443i -4208.95409124359-599.226929193025i -3623.22172576553+365.651591960823i -4047.95894597953-326.746393009049i -5165.02426613522 -3020.31845944117+243.796484977239i -4436.98061078088-447.775252696601i -4114.08192067184+585.720020301849i -2567.24678608062-738.847633053236i -5629.11620892437+1010.98802809457i -2643.7630081059-390.149080847607i -5166.5559001179-1028.70737949072i -2040.46017247446+311.041826301976i -3527.95720161605-1329.71719047948i -5182.97959851901+1006.22381023071i -1984.1063367104-1183.3615552318i -6449.55425120975-225.485687295366i -2452.57162940922-687.869267999551i -4251.80381220956-1021.6588573964i -3983.45236888172-110.015637987744i -2870.44739292914-1158.30037201696i -5691.5187282063-282.824050115541i -2592.1527082063-500.850118490764i -3647.5974609244-1471.40227412287i -4599.26119798413+164.13793201236i -2820.59173683008-1095.35712545062i -4205.18007425184-1138.94514912501i -4564.87375919082-630.679299804958i -3194.32068864334-680.817999931214i -3576.19026020344-1467.09896139376i -4710.65010310097-363.734419901348i -1013.38466984707+8.67113118286578i -3899.51339117375-2599.48862168414i -5123.71881860341-2674.29971969603i -4853.59381775937-245.602566801708i -1520.54386679722-2084.25758595682i -6119.64635579848-2377.54918107375i -6044.58276987056+706.326393646238i -1708.58798969788-2856.46918858604i -10718.535356193-1639.88833168998i -3821.90880943305+1713.68653846752i -1267.87658764336-2823.54760620897i -4459.09619677798-1886.87206059821i -3047.04175476144-245.418213477714i -1364.30880888366-2748.29523775604i -4589.91143845975-2144.97847763686i -3663.81761875812-1199.50108099509i -2769.50995736762-1677.33643425941i -5374.77402230651-3803.26775450303i -5194.62630931055-1629.79612940721i -3459.04641522774-3772.4190274406i -2080.93021075965-3850.90108583167i -8441.09832632479-2516.34365731338i -1601.73670875432-2008.89512476274i -3632.65621698976-4666.20121455565i -11625.6856292656-1751.50799629192i -1086.80513096386-1300.46276135211i -3621.32102084722-3697.02904022451i -11722.9035757902-1791.78982191061i -260.525016147098-663.811221058635i -5295.97607670572-6767.37782790957i -14101.8513655212-6190.16456447602i -6011.16354905018-9858.37996946194i -12697.7334995872-12439.560693828i -2652.45294102735-2269.65713149005i -13319.5113338587-14454.1231282101i 1875.69256215351-10654.7980547397i -45995.1108388051-19781.3666729326i -1012.01567779045-371.171019314438i 36437.4263698502-29971.6212917804i -157744.311944114+6322.33552753424i 96399.1537841152-8638.63714087955i -67530.771520002-34412.4832367762i -9096.34089701827+43874.9777833468i 9564.98530408104-25293.8694173645i -25839.8509549925-13488.3371052893i -261.40107034741-1740.12522496442i -1960.1251112826-8277.07804580822i -9075.32498578604-8923.23287837816i -6287.85787135675-2896.28258259255i -3059.68837620064-4833.67385342295i -3346.52140186118-8804.35080809588i -7285.95530891523-8317.04472642834i -4283.80329009105+5491.16375255742i -2977.76988423515-18074.893752506i -32123.1869592594-3722.85076923609i -1791.35798694901-4233.42710320169i -5154.5676163548-10060.4127324626i -5019.77589265947-7003.83828465762i -10143.604190251-5359.94598857367i 6147.15824638496-5977.29969610669i -19023.2634123871-22841.3418838967i -1755.08896859115+1693.4813483609i 5311.62525428488-9525.73114235217i -4854.72122322396-7842.72901887793i -6079.78576595619+5404.02559005162i -3458.37448405642-10116.108702504i 7595.1424501983+233.130526102173i -29344.6345927001-1530.62338613152i -10866.4438454825+2667.50907983946i -11928.7499865404-18335.0684708033i -13447.6321963807-7182.47536824898i -3066.04520289441-10565.4133277134i -13326.8104153673-12595.2773120671i -6916.07517697279-12315.6232665807i -10220.7135067885-13104.605786964i -11688.668226178-7623.12279537297i -3704.00952472191-17764.5834199232i -34517.5520546946-22453.2887085447i -15541.0947840852+14140.9277975361i -43069.153160039-125919.625332337i 77957.3701770363+12733.0543945127i -4420.8444677018-19524.084777931i 483.887872133599-4710.4547710942i 1595.92800698304-12253.0246055987i 628.731541643204-15272.8411962168i -10845.4223370087-16655.434766213i 11155.1319295139+3827.20282333403i 2682.88171482767-48726.5648051094i -71215.784653799+109332.249214797i -45017.7190371505-174516.252542765i -31039.0345770947-32992.0550917212i 79634.1037790911-61670.6594689248i -15056.0070436811-59004.4562540559i -379.102424619784+1960.24677380169i 34617.3799867032-70460.5806936235i -37358.987898066-59960.0527297269i 26386.8882292741-24125.6882050359i 15480.8878178607-136201.537533738i -69445.6981989924-62263.7962035762i 136192.368448811-128534.786685159i -186552.025293371-552440.490235369i DATA OUT: INVERSE: 256 by 1 7840.00155074917+320.455745311015i 8105.15325965+477.159421352491i 10178.5839359703+8.08930434202466i 10246.4861112451-352.168688541402i 8716.37990429981-256.472644916109i 8932.52315870914+50.8254124239601i 10256.5565141525+62.608051446925i 9956.24924449766-123.102717542663i 8853.4052594709-113.252147209654i 9309.55395097524+104.936387316185i 10237.689186866+118.940456822676i 9747.65603785705-1.50673078267681i 8818.86440664828-128.331104052992i 9182.25153517488+96.3128023402767i 10090.7934119584+302.720531207686i 9768.64781117093-53.6370409329676i 8669.10591505718-349.602002402954i 9300.02102690043-65.5172299929643i 10172.2412578408+199.373701783472i 9717.43321391588-84.8543051945091i 9252.30056251168-424.362662282905i 9538.97191580725-67.797274237765i 9797.769920143+583.739239819394i 9468.87393571739+448.07028890314i 8863.21793017729-171.534521939481i 9260.77487509225-249.338925332404i 9828.78171731202+167.173921907946i 9488.66025576685+206.646352073815i 9125.0299079179-279.794193155463i 9301.56096885963-410.169073860701i 9869.61300273396+6.83503617562673i 9902.84373171276+184.056387062234i 9176.73296021695-144.511457591262i 9014.78663246121-139.50498022708i 9753.62033827657+278.03295571478i 10030.9359639727+434.600302817242i 9321.35495724967-47.7466752819371i 9025.37663562465-414.49848165546i 9461.88848616583-60.1935330747377i 9627.84096156148+394.581176291232i 9343.16243232559+105.522313207241i 9378.92317783183-457.137024006736i 9900.00794425729-263.961247372152i 9855.82845854714+280.915810435703i 9067.1187737394+238.174123487851i 9230.40435995-248.546727538525i 9772.48460806533-55.3730870171764i 9754.85472981113+486.251695809002i 9360.64308328298+315.393459861933i 9199.31440521969-364.88247162049i 9550.40627182155-265.598345501933i 9614.0151725064+228.134297703085i 9260.87772320036-9.78891302583082i 9488.85173834022-644.437739183155i 9754.76854314648-326.427554608996i 9532.79960428079+563.624735133461i 9316.80780393065+513.285893969855i 9331.20070000141-241.420421011936i 9643.2938266007-205.10002821322i 9590.66068492454+364.236399920927i 9165.66379804178+183.892140565955i 9162.72940720376-434.240519653832i 9518.33423400649-239.486314187617i 9794.10937369978+396.088442161398i 9570.29389312435+147.305023761909i 9232.89132680205-501.585476863734i 9512.90488871641-249.387194102582i 10027.9118628466+462.832209034326i 9824.5992992619+267.544609550347i 8864.57873936323-354.230955761909i 8928.34784771664-176.14246373322i 10015.7411669751+502.95447197881i 9984.58849060898+411.826803766518i 8887.5604024028-288.031594808089i 8679.67372911706-551.734493143095i 9912.10621047841-150.716077874456i 10392.8701775172+149.687340480768i 9190.49713391273-136.599010057484i 9745.50409374141-142.194460078285i 12159.4286562682+301.027680878213i 12229.0272615419+482.156110619532i 9424.21958607465-59.4529196307194i 6502.84857536972-492.956701818261i 8705.65632434233+207.806019951219i 12753.5453468989+586.690910263511i 10610.0939425659-338.492293790749i 6928.35346185111-591.883145627605i 8497.49364218682+108.232645681771i 11564.0269052122+395.079551459804i 10386.9702112665-84.2710419651292i 6404.20059455752-303.017043067317i 6889.28338062553+34.7332768825598i 10797.7519899489+283.06958251566i 10190.8902551814+125.242339583908i 6036.17885763433-5.74243632704211i 6298.90868896145-43.5132004794401i 11670.0090462299+25.5971393652659i 14462.6091344673-75.2246321775442i 12290.6683237129-266.770789064169i 11886.4135538754-346.117323900075i 17983.106905881+354.024346439746i 22081.5660751063+195.010308027264i 18579.8249053253-201.650308271238i 15305.0084609571-187.655780784884i 17995.2841643382+384.44018590081i 21034.3763596401+422.097415081481i 16854.357685685-135.597382955605i 11851.2894315033-202.855373509937i 13606.8305632009+2.58397590298122i 18980.049832825-73.461604931666i 18041.5351827003-316.978312360094i 13932.1902761595+114.097329467627i 13616.1705837496+239.65329314352i 16480.4616655445-5.14528140770322i 15459.7248155004-370.818064845171i 11242.0036767954+96.3771446937516i 11373.9671285606+525.304059311772i 15623.6314092849+65.2703046787519i 16514.1501003555-388.680540428811i 13533.2028777648+0.918248103536826i 13792.9712030286+279.510551716311i 18938.7003034006-63.0817892352414i 22408.620626638-322.274169628177i 20641.2094869157-94.986847748533i 18991.0643256121+122.76811574344i 20728.0749079793-198.857555070558i 22062.8613067952-143.874892609739i 18748.4217232629+473.842152764946i 14451.9508446746+550.463885434829i 14121.42084402-112.392572880033i 15649.5342886968-453.992430129864i 14642.535292262-86.3811829408003i 12860.3033078924+148.023645812266i 14536.9497918868-22.0460320798403i 17675.1153309717-242.714958551373i 17663.1739460985-63.2682983306923i 15448.4680987727+83.5759567744654i 15613.5934999875-15.2314053614874i 18085.8615350838+96.1732951707192i 18336.12257782+188.063152662124i 15702.7663537515+41.5840591096458i 15219.5271847966-141.775544522962i 18182.3502515016-1.20966690396517i 19328.3789690401+83.3313719320244i 17623.2496644889+128.117953334813i 17499.1742062216-183.400310531334i 20635.5882106276-128.594313957565i 22264.1790067209-168.208293745655i 19512.481573822-54.8965689410934i 16505.2231663227+161.407335732986i 16689.2414215044+289.500385168141i 16841.2087329541+50.8309579822726i 14132.2634010483-102.653956094771i 12108.7802790298+110.415019663721i 14163.4546008248+137.005723542088i 16643.4385664599-39.69003356187i 15583.2852465341-419.923182334972i 14710.0343458606+21.4095509845176i 17315.2862678758+13.0348965643254i 20585.6212101834-145.323001320327i 20242.7167550577+57.1984432303696i 17809.9222152202+275.976662660947i 17975.532095743+24.6661327451219i 19552.2600528083-105.558908306389i 18301.2290308407+46.5406128210091i 15475.1750800701+206.0540667894i 15621.5972347199+57.0228167502261i 18378.1272131352-235.599758844994i 18660.015488847-134.244081477326i 16542.6760043807+84.4530269751232i 16731.4051917434-74.7240655124619i 19017.9268423482-80.3010127273673i 18268.2303608516-122.922571382427i 15337.7514569812+169.734460759735i 14504.8346051534+362.579729615796i 15854.1440909662-84.3359576063143i 15875.8192327801-143.370878010877i 14379.6418490573+302.44060641868i 14381.7903513126+117.698415043255i 17000.8861302676-393.749121982112i 19028.5386708435-444.312305670912i 19101.4953677822+63.7978292406763i 19430.4155237702+353.4244466072i 21082.3176841598+17.3347960267469i 21615.3136426438-275.561894964819i 19549.9828031958+68.411947468568i 17065.0913231752+416.172006944137i 16686.9482186547+123.920486835007i 16998.193183331-286.497658837625i 15682.9227314361-217.095925016165i 14546.4310379743+191.33503108609i 15141.8337833875+137.215946121949i 16377.327554944-267.696724912078i 16183.6097281528-226.393983232511i 15358.3059320599+147.196006365001i 15941.6592458394+138.500492102059i 17265.4114045506-158.703505626969i 17116.6362337858-116.702461258392i 16138.718645865+351.114160836193i 15896.1278406865+462.262778414771i 16576.1182002947-160.829781905644i 16965.1601853964-456.036364832516i 17248.6425848308-24.1064528689708i 18429.2798793564+243.807910852877i 20248.3286519901-128.561492543614i 21405.7149716271-454.068345440609i 21039.0305616828+1.80569387090634i 19879.0956505632+437.790730316093i 19005.9602406713+146.186880621445i 18245.4298567075-194.345161564841i 16795.7388530412+45.3201435089701i 15175.9497737328+203.790959311885i 13980.459356858-91.4326691077501i 14059.3761725349-256.455407586692i 14418.0043172179+18.2265538351294i 14573.0498105411+222.843366194746i 15028.835514915-123.992894322336i 16159.494934992-288.197395006928i 17084.6283480535+53.2705864185527i 17221.657980077+265.476101914727i 17463.4887821717+40.8061857581788i 18163.2615916733-8.44267737247799i 18028.4470932914+97.4765372033534i 17202.0143828941+116.891092552716i 17102.9772293012-36.9662612964683i 17754.3380950552-146.768447054769i 18575.6429824089-100.094319700416i 19179.9631041313-95.5821203639142i 19778.7593271099-176.668539128046i 20287.2736877528-58.6032548796793i 19853.3900668597+191.730108369397i 18366.3453876304+199.092120235005i 17107.1710747749+21.8689575982088i 16210.4318406279-77.0896202123089i 15087.7436300057+124.69619966137i 14367.1376127796+254.141178705359i 14476.2189341844-34.5085202103167i 14893.6589519948-308.913512141856i 15151.700199185-209.710201259933i 15258.5335144844+74.0794909945342i 15863.5909671739+77.6253269239344i 17459.3825392676-89.1138743225998i 18941.467341368+4.81272400052487i 19040.0513777757+197.035191902071i 18193.9384564359-12.476070543246i 17835.9534394925-94.5299022406289i 17916.1431141813+99.4854820262875i 17265.587308002+121.477435644898i 16414.2118007692-73.1197957069111i 17325.4709892979-170.780747888196i 18982.9751970467-74.6763483149042i 18984.6311331762-95.3112061834856i 17803.5559206734-108.835318107964i 18182.4240025476+30.3967892345644i 19335.1844372437+72.0187999022205i 17933.0494516059-70.5333625292354i |
#7
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
Hi. I don't really follow. A random array of complex data will most likely
have an Inverse FFt of Complex data as well. I'm not sure what output you are expecting. Were you working with Integer values at one point? The first, and mid-point are real values only, so I'm thinking you took a fft on some data as well?? 3622432.69085871 -5165.02426613522 Were you trying to do Convolution on two sets of data? Do you have a small sample of data (say 8), and then show what you want? -- Dana DeLouis "Daniel" wrote in message ... here is the data: DATA IN: 256 by 1: 3622432.69085871 -186510.890077619+552318.675643871i 136351.90840889+128685.356316703i <snip |
#8
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
Disagree:
I have done this several times before, this is the first time that I get a complex return on an inverse. The inverse should return an array of "real" numbers. The FT is performed on a time domain array (real), once you perform an FT you go to the frequency domain (complex array), when you come back (inverse) it should come back to the time domain (real) "Dana DeLouis" wrote: Hi. I don't really follow. A random array of complex data will most likely have an Inverse FFt of Complex data as well. I'm not sure what output you are expecting. Were you working with Integer values at one point? The first, and mid-point are real values only, so I'm thinking you took a fft on some data as well?? 3622432.69085871 -5165.02426613522 Were you trying to do Convolution on two sets of data? Do you have a small sample of data (say 8), and then show what you want? -- Dana DeLouis "Daniel" wrote in message ... here is the data: DATA IN: 256 by 1: 3622432.69085871 -186510.890077619+552318.675643871i 136351.90840889+128685.356316703i <snip |
#9
![]()
Posted to microsoft.public.excel.programming
|
|||
|
|||
![]()
If you like complex numbers and fourier transforms and if you have
some free time Google JExcel. |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Inverse Fourier Transform | Excel Programming | |||
Fourier Series | Excel Worksheet Functions | |||
Fourier Analysis | Excel Worksheet Functions | |||
Fourier Analys | Excel Programming | |||
Fourier analysis | Excel Programming |