View Single Post
  #6   Report Post  
Max
 
Posts: n/a
Default

Perhaps a set-up for 12 numbers to play around with ?

Assuming your intent is that if you have,
say 2 sets of 3 numbers in 3 cols
(all 6 numbers unique), i.e.:

1 2 3
4 5 6

you want 8 combinations
(= 2 x 2 x 2), viz.:

1-2-3
1-2-6
1-5-3
1-5-6
4-2-3
4-2-6
4-5-3
4-5-6

So, for 12 numbers,
i.e. 2 sets of 6 numbers in 6 cols:

1 2 3 4 5 6
7 8 9 10 11 12

you want: 2 x 2 x 2 x 2 x 2 x 2
= 2^6 = 64 combinations

In Sheet1
-------------
Assume the 12 numbers are in A1:F2
(all 12 numbers assumed unique)

1 10 21 34 40 11
3 14 23 37 42 13

In Sheet2
-------------
Put in:

A1: =OFFSET(Sheet1!$A$1,INT((ROW(A1)-1)/2),)
B1: =OFFSET(Sheet1!$B$1,MOD(ROW(A1)-1,2),)
C1: =OFFSET(Sheet1!$C$1,INT((ROW(A1)-1)/2),)
D1: =OFFSET(Sheet1!$D$1,MOD(ROW(A1)-1,2),)
E1: =OFFSET(Sheet1!$E$1,INT((ROW(A1)-1)/2),)
F1: =OFFSET(Sheet1!$F$1,MOD(ROW(A1)-1,2),)

Select A1:F1, copy down to F4

In Sheet3
-------------
Put in A1:
=OFFSET(Sheet2!$A$1,INT((ROW(A1)-1)/4),)&"-"&OFFSET(Sheet2!$B$1,INT((ROW(A1)
-1)/4),)

Put in B1:
=OFFSET(Sheet2!$C$1,MOD(ROW(A1)-1,4),)&"-"&OFFSET(Sheet2!$C$1,MOD(ROW(A1)-1,
4),1)

Put in C1:
=OFFSET(Sheet2!$E$1,MOD(ROW(A1)-1,4),)&"-"&OFFSET(Sheet2!$E$1,MOD(ROW(A1)-1,
4),1)

Select A1:C1, copy down to C16

In Sheet4
------------
Put in A1:

=OFFSET(Sheet3!$A$1,INT((ROW(A1)-1)/4),)&"-"&OFFSET(Sheet3!$B$1,INT((ROW(A1)
-1)/4),)&"-"&OFFSET(Sheet3!$C$1,MOD(ROW(A1)-1,4),)

Copy down to A64

A1:A64 will return all the 64 "unique" combinations
of the 12 numbers in Sheet1's A1:F4
(joined with hyphens)

1-10-21-34-40-11
1-10-21-34-40-13
1-10-21-34-42-11
1-10-21-34-42-13
1-10-21-37-40-11
1-10-21-37-40-13
......
......
3-14-23-37-40-11
3-14-23-37-40-13
3-14-23-37-42-11
3-14-23-37-42-13

--
Rgds
Max
xl 97
---
GMT+8, 1° 22' N 103° 45' E
xdemechanik <atyahoo<dotcom
----
"iart" wrote in message
...
ok, i figured it out.

well, interesting. i tested it with 12 numbers. there are only 36
possibilities, but the program returned 4000!

6 columns with each column having 2 distinct possibilities.