Home |
Search |
Today's Posts |
|
#1
![]()
Posted to microsoft.public.excel.misc
|
|||
|
|||
![]()
I am attempting to fit a nonlinear curve to the data listed below using Excel
2003 with the standard stat add-in provided with Excel. I normally use SAS for statistical analysis and am not familiar with all the capabilities of Solver, etc. I would like to achieve the above curve fit solution using Excel, since this is one step in an application to be used by others who do not have SAS, but have basic Excel capability. In SAS I fit a nonlinear regression curve of the form: lnY1 = b * exp( -a*lnX1), this provided coefficients of b=-1.91 and a=0.515, with an R-square of 0.98 (not perfect but close enough !). I have not been able to duplicate this in Excel. The closest I can come (without expensive 3rd-party add in software), is to fit a logarithmic curve (chart,trendline, etc) and this doesn't handle the limit approached on the Y-axis very well. Any ideas ? (heres the data in its original, non-Ln transformed format): X Y 0.09 0.00123 0.15 0.0067 0.2 0.0137 0.4 0.0494 0.6 0.0852 0.8 0.1176 1 0.1465 1.2 0.1724 1.4 0.1957 1.6 0.2168 1.8 0.2361 2 0.2539 5 0.4193 10 0.5437 20 0.6544 40 0.7453 60 0.7888 80 0.8156 100 0.8343 500 0.9748 700 0.9787 1000 0.9822 -- Thanks -------- geocalc |
#2
![]()
Posted to microsoft.public.excel.misc
|
|||
|
|||
![]()
You need Solver:
In Column A put your x-values. In Column B put your y-values In Column C put ln(y) values =LN(B1) and copy down. In D1 enter the model equation =$F$2*EXP(-$F$1*LN(A1)) and copy down In E1 enter error squared =(D1-C1)^2 and copy down In E23 sum the square errors =SUM(E1:E22) In F1 and F2 enter 1 (starter values for a and b) You should see: 0.090 0.001 -6.701 11.111 317.262 1 0.150 0.007 -5.006 6.667 136.243 1 0.200 0.014 -4.290 5.000 86.311 0.400 0.049 -3.008 2.500 30.336 0.600 0.085 -2.463 1.667 17.052 0.800 0.118 -2.140 1.250 11.495 1.000 0.147 -1.921 1.000 8.531 1.200 0.172 -1.758 0.833 6.715 1.400 0.196 -1.631 0.714 5.501 1.600 0.217 -1.529 0.625 4.639 1.800 0.236 -1.443 0.556 3.996 2.000 0.254 -1.371 0.500 3.500 5.000 0.419 -0.869 0.200 1.143 10.000 0.544 -0.609 0.100 0.503 20.000 0.654 -0.424 0.050 0.225 40.000 0.745 -0.294 0.025 0.102 60.000 0.789 -0.237 0.017 0.064 80.000 0.816 -0.204 0.013 0.047 100.000 0.834 -0.181 0.010 0.037 500.000 0.975 -0.026 0.002 0.001 700.000 0.979 -0.022 0.001 0.001 1000.000 0.982 -0.018 0.001 0.000 633.703 Then run solver to minimize E23 by adjusting F1 and F2 and you should see: 0.090 0.001 -6.701 -6.600 0.010 0.515001356 0.150 0.007 -5.006 -5.074 0.005 -1.909895412 0.200 0.014 -4.290 -4.375 0.007 0.400 0.049 -3.008 -3.062 0.003 0.600 0.085 -2.463 -2.485 0.000 0.800 0.118 -2.140 -2.142 0.000 1.000 0.147 -1.921 -1.910 0.000 1.200 0.172 -1.758 -1.739 0.000 1.400 0.196 -1.631 -1.606 0.001 1.600 0.217 -1.529 -1.499 0.001 1.800 0.236 -1.443 -1.411 0.001 2.000 0.254 -1.371 -1.337 0.001 5.000 0.419 -0.869 -0.834 0.001 10.000 0.544 -0.609 -0.583 0.001 20.000 0.654 -0.424 -0.408 0.000 40.000 0.745 -0.294 -0.286 0.000 60.000 0.789 -0.237 -0.232 0.000 80.000 0.816 -0.204 -0.200 0.000 100.000 0.834 -0.181 -0.178 0.000 500.000 0.975 -0.026 -0.078 0.003 700.000 0.979 -0.022 -0.065 0.002 1000.000 0.982 -0.018 -0.054 0.001 0.038 With F1 and F2 having your desired values -- Gary''s Student "geocalc" wrote: I am attempting to fit a nonlinear curve to the data listed below using Excel 2003 with the standard stat add-in provided with Excel. I normally use SAS for statistical analysis and am not familiar with all the capabilities of Solver, etc. I would like to achieve the above curve fit solution using Excel, since this is one step in an application to be used by others who do not have SAS, but have basic Excel capability. In SAS I fit a nonlinear regression curve of the form: lnY1 = b * exp( -a*lnX1), this provided coefficients of b=-1.91 and a=0.515, with an R-square of 0.98 (not perfect but close enough !). I have not been able to duplicate this in Excel. The closest I can come (without expensive 3rd-party add in software), is to fit a logarithmic curve (chart,trendline, etc) and this doesn't handle the limit approached on the Y-axis very well. Any ideas ? (heres the data in its original, non-Ln transformed format): X Y 0.09 0.00123 0.15 0.0067 0.2 0.0137 0.4 0.0494 0.6 0.0852 0.8 0.1176 1 0.1465 1.2 0.1724 1.4 0.1957 1.6 0.2168 1.8 0.2361 2 0.2539 5 0.4193 10 0.5437 20 0.6544 40 0.7453 60 0.7888 80 0.8156 100 0.8343 500 0.9748 700 0.9787 1000 0.9822 -- Thanks -------- geocalc |
#3
![]()
Posted to microsoft.public.excel.misc
|
|||
|
|||
![]()
Thank you -- this works well ! I don't want to overly impose, but it would be
nice to have an R-square associated with the fit -- and ultimately to plot the data in a chart. I made a few quick attempts but no luck so far. -- Thanks -------- geocalc "Gary''s Student" wrote: You need Solver: In Column A put your x-values. In Column B put your y-values In Column C put ln(y) values =LN(B1) and copy down. In D1 enter the model equation =$F$2*EXP(-$F$1*LN(A1)) and copy down In E1 enter error squared =(D1-C1)^2 and copy down In E23 sum the square errors =SUM(E1:E22) In F1 and F2 enter 1 (starter values for a and b) You should see: 0.090 0.001 -6.701 11.111 317.262 1 0.150 0.007 -5.006 6.667 136.243 1 0.200 0.014 -4.290 5.000 86.311 0.400 0.049 -3.008 2.500 30.336 0.600 0.085 -2.463 1.667 17.052 0.800 0.118 -2.140 1.250 11.495 1.000 0.147 -1.921 1.000 8.531 1.200 0.172 -1.758 0.833 6.715 1.400 0.196 -1.631 0.714 5.501 1.600 0.217 -1.529 0.625 4.639 1.800 0.236 -1.443 0.556 3.996 2.000 0.254 -1.371 0.500 3.500 5.000 0.419 -0.869 0.200 1.143 10.000 0.544 -0.609 0.100 0.503 20.000 0.654 -0.424 0.050 0.225 40.000 0.745 -0.294 0.025 0.102 60.000 0.789 -0.237 0.017 0.064 80.000 0.816 -0.204 0.013 0.047 100.000 0.834 -0.181 0.010 0.037 500.000 0.975 -0.026 0.002 0.001 700.000 0.979 -0.022 0.001 0.001 1000.000 0.982 -0.018 0.001 0.000 633.703 Then run solver to minimize E23 by adjusting F1 and F2 and you should see: 0.090 0.001 -6.701 -6.600 0.010 0.515001356 0.150 0.007 -5.006 -5.074 0.005 -1.909895412 0.200 0.014 -4.290 -4.375 0.007 0.400 0.049 -3.008 -3.062 0.003 0.600 0.085 -2.463 -2.485 0.000 0.800 0.118 -2.140 -2.142 0.000 1.000 0.147 -1.921 -1.910 0.000 1.200 0.172 -1.758 -1.739 0.000 1.400 0.196 -1.631 -1.606 0.001 1.600 0.217 -1.529 -1.499 0.001 1.800 0.236 -1.443 -1.411 0.001 2.000 0.254 -1.371 -1.337 0.001 5.000 0.419 -0.869 -0.834 0.001 10.000 0.544 -0.609 -0.583 0.001 20.000 0.654 -0.424 -0.408 0.000 40.000 0.745 -0.294 -0.286 0.000 60.000 0.789 -0.237 -0.232 0.000 80.000 0.816 -0.204 -0.200 0.000 100.000 0.834 -0.181 -0.178 0.000 500.000 0.975 -0.026 -0.078 0.003 700.000 0.979 -0.022 -0.065 0.002 1000.000 0.982 -0.018 -0.054 0.001 0.038 With F1 and F2 having your desired values -- Gary''s Student "geocalc" wrote: I am attempting to fit a nonlinear curve to the data listed below using Excel 2003 with the standard stat add-in provided with Excel. I normally use SAS for statistical analysis and am not familiar with all the capabilities of Solver, etc. I would like to achieve the above curve fit solution using Excel, since this is one step in an application to be used by others who do not have SAS, but have basic Excel capability. In SAS I fit a nonlinear regression curve of the form: lnY1 = b * exp( -a*lnX1), this provided coefficients of b=-1.91 and a=0.515, with an R-square of 0.98 (not perfect but close enough !). I have not been able to duplicate this in Excel. The closest I can come (without expensive 3rd-party add in software), is to fit a logarithmic curve (chart,trendline, etc) and this doesn't handle the limit approached on the Y-axis very well. Any ideas ? (heres the data in its original, non-Ln transformed format): X Y 0.09 0.00123 0.15 0.0067 0.2 0.0137 0.4 0.0494 0.6 0.0852 0.8 0.1176 1 0.1465 1.2 0.1724 1.4 0.1957 1.6 0.2168 1.8 0.2361 2 0.2539 5 0.4193 10 0.5437 20 0.6544 40 0.7453 60 0.7888 80 0.8156 100 0.8343 500 0.9748 700 0.9787 1000 0.9822 -- Thanks -------- geocalc |
#4
![]()
Posted to microsoft.public.excel.misc
|
|||
|
|||
![]()
Find SSresidual using SUMXMY2; SUMXMY2(Cvalues,Dvalues) using Gary's
solution Find SStotal using DEVSQ: DEVSQ(Cvalues) compute SSregression from SStotal = SSregression + SSresidual compute R2 using R2= SSregression/SStotal; I get 0.9994 Hope J Lewis is around to double check this! best wishes -- Bernard V Liengme www.stfx.ca/people/bliengme remove caps from email "geocalc" (donotspam) wrote in message ... Thank you -- this works well ! I don't want to overly impose, but it would be nice to have an R-square associated with the fit -- and ultimately to plot the data in a chart. I made a few quick attempts but no luck so far. -- Thanks -------- geocalc "Gary''s Student" wrote: You need Solver: In Column A put your x-values. In Column B put your y-values In Column C put ln(y) values =LN(B1) and copy down. In D1 enter the model equation =$F$2*EXP(-$F$1*LN(A1)) and copy down In E1 enter error squared =(D1-C1)^2 and copy down In E23 sum the square errors =SUM(E1:E22) In F1 and F2 enter 1 (starter values for a and b) You should see: 0.090 0.001 -6.701 11.111 317.262 1 0.150 0.007 -5.006 6.667 136.243 1 0.200 0.014 -4.290 5.000 86.311 0.400 0.049 -3.008 2.500 30.336 0.600 0.085 -2.463 1.667 17.052 0.800 0.118 -2.140 1.250 11.495 1.000 0.147 -1.921 1.000 8.531 1.200 0.172 -1.758 0.833 6.715 1.400 0.196 -1.631 0.714 5.501 1.600 0.217 -1.529 0.625 4.639 1.800 0.236 -1.443 0.556 3.996 2.000 0.254 -1.371 0.500 3.500 5.000 0.419 -0.869 0.200 1.143 10.000 0.544 -0.609 0.100 0.503 20.000 0.654 -0.424 0.050 0.225 40.000 0.745 -0.294 0.025 0.102 60.000 0.789 -0.237 0.017 0.064 80.000 0.816 -0.204 0.013 0.047 100.000 0.834 -0.181 0.010 0.037 500.000 0.975 -0.026 0.002 0.001 700.000 0.979 -0.022 0.001 0.001 1000.000 0.982 -0.018 0.001 0.000 633.703 Then run solver to minimize E23 by adjusting F1 and F2 and you should see: 0.090 0.001 -6.701 -6.600 0.010 0.515001356 0.150 0.007 -5.006 -5.074 0.005 -1.909895412 0.200 0.014 -4.290 -4.375 0.007 0.400 0.049 -3.008 -3.062 0.003 0.600 0.085 -2.463 -2.485 0.000 0.800 0.118 -2.140 -2.142 0.000 1.000 0.147 -1.921 -1.910 0.000 1.200 0.172 -1.758 -1.739 0.000 1.400 0.196 -1.631 -1.606 0.001 1.600 0.217 -1.529 -1.499 0.001 1.800 0.236 -1.443 -1.411 0.001 2.000 0.254 -1.371 -1.337 0.001 5.000 0.419 -0.869 -0.834 0.001 10.000 0.544 -0.609 -0.583 0.001 20.000 0.654 -0.424 -0.408 0.000 40.000 0.745 -0.294 -0.286 0.000 60.000 0.789 -0.237 -0.232 0.000 80.000 0.816 -0.204 -0.200 0.000 100.000 0.834 -0.181 -0.178 0.000 500.000 0.975 -0.026 -0.078 0.003 700.000 0.979 -0.022 -0.065 0.002 1000.000 0.982 -0.018 -0.054 0.001 0.038 With F1 and F2 having your desired values -- Gary''s Student "geocalc" wrote: I am attempting to fit a nonlinear curve to the data listed below using Excel 2003 with the standard stat add-in provided with Excel. I normally use SAS for statistical analysis and am not familiar with all the capabilities of Solver, etc. I would like to achieve the above curve fit solution using Excel, since this is one step in an application to be used by others who do not have SAS, but have basic Excel capability. In SAS I fit a nonlinear regression curve of the form: lnY1 = b * exp( -a*lnX1), this provided coefficients of b=-1.91 and a=0.515, with an R-square of 0.98 (not perfect but close enough !). I have not been able to duplicate this in Excel. The closest I can come (without expensive 3rd-party add in software), is to fit a logarithmic curve (chart,trendline, etc) and this doesn't handle the limit approached on the Y-axis very well. Any ideas ? (heres the data in its original, non-Ln transformed format): X Y 0.09 0.00123 0.15 0.0067 0.2 0.0137 0.4 0.0494 0.6 0.0852 0.8 0.1176 1 0.1465 1.2 0.1724 1.4 0.1957 1.6 0.2168 1.8 0.2361 2 0.2539 5 0.4193 10 0.5437 20 0.6544 40 0.7453 60 0.7888 80 0.8156 100 0.8343 500 0.9748 700 0.9787 1000 0.9822 -- Thanks -------- geocalc |
#5
![]()
Posted to microsoft.public.excel.misc
|
|||
|
|||
![]()
Using Solver I get b -1.90989
a 0.515003 did not bother with R2 If interested in how to use Solver send message to my private email best wishes-- Bernard V Liengme www.stfx.ca/people/bliengme remove caps from email "geocalc" (donotspam) wrote in message ... I am attempting to fit a nonlinear curve to the data listed below using Excel 2003 with the standard stat add-in provided with Excel. I normally use SAS for statistical analysis and am not familiar with all the capabilities of Solver, etc. I would like to achieve the above curve fit solution using Excel, since this is one step in an application to be used by others who do not have SAS, but have basic Excel capability. In SAS I fit a nonlinear regression curve of the form: lnY1 = b * exp( -a*lnX1), this provided coefficients of b=-1.91 and a=0.515, with an R-square of 0.98 (not perfect but close enough !). I have not been able to duplicate this in Excel. The closest I can come (without expensive 3rd-party add in software), is to fit a logarithmic curve (chart,trendline, etc) and this doesn't handle the limit approached on the Y-axis very well. Any ideas ? (heres the data in its original, non-Ln transformed format): X Y 0.09 0.00123 0.15 0.0067 0.2 0.0137 0.4 0.0494 0.6 0.0852 0.8 0.1176 1 0.1465 1.2 0.1724 1.4 0.1957 1.6 0.2168 1.8 0.2361 2 0.2539 5 0.4193 10 0.5437 20 0.6544 40 0.7453 60 0.7888 80 0.8156 100 0.8343 500 0.9748 700 0.9787 1000 0.9822 -- Thanks -------- geocalc |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Can I get Excel to determine the line curve formula without graph. | Excel Discussion (Misc queries) | |||
curve fitting a charging capacitor type curve | Excel Discussion (Misc queries) | |||
regression | Excel Worksheet Functions | |||
watch a curve change over time like a movie | Charts and Charting in Excel | |||
Vertical ND Curve on Combination Chart | Charts and Charting in Excel |