![]() |
Area under trendline
Does anybody know how to find the area under the curve of a trendline (6th
degree polynomial in my case). Thanks in advance for any help. |
Area under trendline
Two ways:
1 Divide into relatively small intervals, & in each interval muliply the width by the average height. 2 As you've got a polynomial in x, you can use the integration formula: integral(x^n)dx = (x^(n+1))/(n+1) ... so the integral from 0 to A2 of your formula (3E+09x6 - 7E+08x5 + 8E+07x4 - 4E+06x3 + 42077x2 + 1197.x) becomes =3E+09*A2^7/7 - 7E+08*A2^6/6 + 8E+07*A2^5/5 - 4E+06*A2^4/4 + 42077*A2^3/3 + 1197*A2^2/2 -- David Biddulph "Josh" wrote in message ... Does anybody know how to find the area under the curve of a trendline (6th degree polynomial in my case). Thanks in advance for any help. |
Area under trendline
There is no native Excel function for integration, but integrating a
polynomial is straightforward. Assume the coefficients are in A2:G2 (as in output of LINEST for fitting a polynomial) and the corresponding powers are in A1:G1. The value of the polynomial at x is then =SUMPRODUCT(A2:G2,x^A1:G1), and the integral from a to b of the polynomial is =SUMPRODUCT(A2:G2/(A1:G1+1),b^(A1:G1+1))-SUMPRODUCT(A2:G2/(A1:G1+1),a^(A1:G1+1)) Jerry "Josh" wrote: Does anybody know how to find the area under the curve of a trendline (6th degree polynomial in my case). Thanks in advance for any help. |
All times are GMT +1. The time now is 09:53 AM. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
ExcelBanter.com